Concentration-dependent Dual Effects of Hydrogen Peroxide on Insulin Signal Transduction in H4IIEC Hepatocytes
نویسندگان
چکیده
BACKGROUND Oxidative stress induced by the accumulation of reactive oxygen species (ROS) has a causal role in the development of insulin resistance, whereas ROS themselves function as intracellular second messengers that promote insulin signal transduction. ROS can act both positively and negatively on insulin signaling, but the molecular mechanisms controlling these dual actions of ROS are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS Here, we directly treated H4IIEC hepatocytes with hydrogen peroxide (H2O2), a representative membrane-permeable oxidant and the most abundant ROS in cells, to identify the key factors determining whether ROS impair or enhance intracellular insulin signaling. Treatment with high concentrations of H2O2 (25-50 µM) for 3 h reduced insulin-stimulated Akt phosphorylation, and increased the phosphorylation of both JNK and its substrate c-Jun. In contrast, lower concentrations of H2O2 (5-10 µM) enhanced insulin-stimulated phosphorylation of Akt. Moreover, lower concentrations suppressed PTP1B activity, suggesting that JNK and phosphatases such as PTP1B may play roles in determining the thresholds for the diametrical effects of H2O2 on cellular insulin signaling. Pretreatment with antioxidant N-acetyl-L-cysteine (10 mM) canceled the signal-promoting action of low H2O2 (5 µM), and it canceled out further impairment of insulin of insulin signaling induced by high H₂O₂ (25 µM). CONCLUSIONS/SIGNIFICANCE Our results demonstrate that depending on its concentration, H2O2 can have the positive or negative effect on insulin signal transduction in H4IIEC hepatocytes, suggesting that the concentration of intracellular ROS may be a major factor in determining whether ROS impair or enhance insulin signaling.
منابع مشابه
Progesterone and Cilostazol Protect mice pancreatic islets from oxidative stress induced by hydrogen peroxide
Abstract Reactive oxygen species and oxidative stress impair β-cell function and reduce insulin secretion. It has been shown that progesterone and cilostazol possess antioxidant properties. The present study was aimed to investigate in vitro pretreatment effect of progesterone and cilostazol on insulin secretion as well as their protective effects against hydrogen peroxide-induced oxidative str...
متن کاملThe effect of eight weeks of aerobic exercise and coriander seed extract on oxidative stress and cellular energy indices of heart tissue in male rats poisoned with hydrogen peroxide
Introduction: The aim of this research was to investigate the effect of eight weeks of aerobic training and coriander seed extract with two doses of 5 and 10 mg on oxidative stress markers and cardiac muscle ATP levels of rats poisoned with hydrogen peroxide. Methods: 42 healthy adult male rats were randomly divided into 7 groups. During one week, the groups were poisoned intraperitoneally by ...
متن کاملProgesterone and Cilostazol Protect mice pancreatic islets from oxidative stress induced by hydrogen peroxide
Abstract Reactive oxygen species and oxidative stress impair β-cell function and reduce insulin secretion. It has been shown that progesterone and cilostazol possess antioxidant properties. The present study was aimed to investigate in vitro pretreatment effect of progesterone and cilostazol on insulin secretion as well as their protective effects against hydrogen peroxide-induced oxidative str...
متن کاملConcentration dependent effects of hydrogen peroxide on lens epithelial cells.
AIMS To evaluate the effects of hydrogen peroxide exposure on the survival and proliferation of cultured lens epithelial cells. METHODS TOTL-86 cells, a line of rabbit lens epithelial cells, were used. The survival and proliferation of TOTL-86 cells were quantified by a rapid colorimetric assay (MTT assay). To determine the effects of hydrogen peroxide, TOTL-86 cells were exposed to different...
متن کاملThe Role of signaling of hydrogen peroxide and 24-epibrassinosteroid on physiological traits of cumin (Cuminum cyminum L.) under drought stress
Two biochemical compounds of hydrogen peroxide and 24-epibrassinosteroid have significant biological effects on plant growth. In the present study, the effects of drought and its interaction with H2O2 and 24-epibrassinosteroid on the protein, sugars, essential oil percentage, photosynthetic pigments, phenols and flavonoids were investigated. For this purpose, a factorial experiment in a complet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011